Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
ACS Sens ; 7(7): 1837-1846, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35713201

RESUMO

Melanoma is a malignant cancer with a high risk of metastasis and continued increase in death rates over the past decades, and its prognosis is highly related to the disease's stage, while early detection and treatment of melanoma are significant to the improvement of its therapy outcome. Different from the traditional methods for disease diagnosis, enzyme-activated fluorescent probes were developed rapidly due to their high sensitivity and temporal-spatial ratio and have been widely applied in tumor detection, surgical navigation, and cancer-related research. Fibroblast activation protein-α (FAPα), a serine-type cell surface protease that plays important roles in cell invasion and extracellular matrix degradation, is widely involved in tumor progression such as malignant melanoma, so developing a FAPα activity-based molecular tool would be of great potential for the early diagnosis and therapy of melanoma. However, few fluorescent probes targeting FAPα have been applied in melanoma-related studies, and thus, the construction of FAPα activity-based fluorescent probes for melanoma detection is in urgent need. By incorporating the selective recognition unit with a red-emission fluorophore, cresyl violet, we herein report an ultrasensitive (limit of detection = 5.3 ng/mL) fluorogenic probe for FAPα activity sensing, named CV-FAP; the acquired probe showed a significantly higher binding affinity (15.7-fold) and overall catalytic efficiency (2.6-fold) when compared with those of the best reported FAPα probes. The good performance of CV-FAP made it possible to discriminate malignant melanoma cells and tumor-bearing mice from normal cells and mice with high contrast. More importantly, CV-FAP showed significant antitumor activity toward melanoma in cultured cells and tumor-bearing nude mice (over 95% inhibited tumor growth) with good safety, which made it an ideal theranostic agent for melanoma.


Assuntos
Gelatinases , Melanoma , Animais , Linhagem Celular Tumoral , Endopeptidases , Corantes Fluorescentes , Gelatinases/química , Melanoma/diagnóstico por imagem , Melanoma/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Nus , Serina Endopeptidases/química
2.
Mar Drugs ; 20(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35049903

RESUMO

Although the S8 family in the MEROPS database contains many peptidases, only a few S8 peptidases have been applied in the preparation of bioactive oligopeptides. Bovine bone collagen is a good source for preparing collagen oligopeptides, but has been so far rarely applied in collagen peptide preparation. Here, we characterized a novel S8 gelatinase, Aa2_1884, from marine bacterium Flocculibacter collagenilyticus SM1988T, and evaluated its potential application in the preparation of collagen oligopeptides from bovine bone collagen. Aa2_1884 is a multimodular S8 peptidase with a distinct domain architecture from other reported peptidases. The recombinant Aa2_1884 over-expressed in Escherichia coli showed high activity toward gelatin and denatured collagens, but no activity toward natural collagens, indicating that Aa2_1884 is a gelatinase. To evaluate the potential of Aa2_1884 in the preparation of collagen oligopeptides from bovine bone collagen, three enzymatic hydrolysis parameters, hydrolysis temperature, hydrolysis time and enzyme-substrate ratio (E/S), were optimized by single factor experiments, and the optimal hydrolysis conditions were determined to be reaction at 60 ℃ for 3 h with an E/S of 400 U/g. Under these conditions, the hydrolysis efficiency of bovine bone collagen by Aa2_1884 reached 95.3%. The resultant hydrolysate contained 97.8% peptides, in which peptides with a molecular weight lower than 1000 Da and 500 Da accounted for 55.1% and 39.5%, respectively, indicating that the hydrolysate was rich in oligopeptides. These results indicate that Aa2_1884 likely has a promising potential application in the preparation of collagen oligopeptide-rich hydrolysate from bovine bone collagen, which may provide a feasible way for the high-value utilization of bovine bone collagen.


Assuntos
Colágeno/química , Gelatinases/farmacologia , Oligopeptídeos/química , Proteobactérias , Animais , Organismos Aquáticos , Gelatinases/química , Hidrólise , Relação Estrutura-Atividade
3.
Food Chem ; 355: 129586, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773458

RESUMO

In order to invent a porcine gelatine detection device using microbial resources, bacterial enzymes with a preference towards porcine gelatine and their candidate genes were evaluated. Five (n = 5) bacterial strains isolated from hot spring water and wet clay, Malaysia were screened for their gelatinase activity. The gelatinase enzyme was extracted and purified using ammonium sulphate precipitation prior to performing gelatinase assay on porcine, bovine and fish gelatine medium substrates. The G2 strain or Enterobacter aerogenes (Strain EA1) was selected for whole genome sequenced after showing a consistent trend of preference towards porcine gelatine. The gelatinase candidate gene gelEA1_9 was cloned and expressed. Based on one-way analysis of variance (ANOVA) with POST-HOC Duncan test (α = 0.05), the final product of gelEA1_9 was identified as a novel gelatinase. This gelatinase presented no significant difference in activity towards porcine gelatine. Hence, the present study demonstrated an enzyme-substrate interaction for porcine gelatine identification.


Assuntos
Proteínas de Bactérias/metabolismo , Gelatina/metabolismo , Gelatinases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bovinos , Enterobacter aerogenes/enzimologia , Enterobacter aerogenes/genética , Peixes/metabolismo , Gelatinases/química , Gelatinases/genética , Expressão Gênica , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato , Suínos
4.
Cancer Metastasis Rev ; 39(3): 783-803, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601975

RESUMO

Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP's role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.


Assuntos
Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Serina Endopeptidases/metabolismo , Animais , Endopeptidases , Gelatinases/química , Gelatinases/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Neoplasias/genética , Neoplasias/patologia , Serina Endopeptidases/química , Serina Endopeptidases/genética , Relação Estrutura-Atividade
5.
Adv Biosyst ; 4(8): e2000084, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597036

RESUMO

Extracellular matrix (ECM) remodeling is emerging as a modulator of neural maturation and axon extension. Most studies have used rodent cells to develop matrices capable of manipulating extracellular matrix remodeling for regenerative applications. However, clinically relevant human induced pluripotent stem cell derived neural stem cells (hNSC) do not always behave in a similar manner as rodent cells. In this study, hNSC response to a hyaluronic acid matrix with laminin derived IKVAV and LRE peptide signaling that has previously shown to promote ECM remodeling and neurite extension by mouse embryonic stem cells is examined. The addition of enzymatically degradable cross linker GPQGIWGQ to the IKVAV and LRE containing hyaluronic acid matrix is necessary to promote neurite extension, hyaluronic acid degradation, and gelatinase expression over hyaluronic acid matrices containing GPQGIWGQ, IKVAV and LRE, or no peptides. Changes in peptide content alters a number of matrix properties that can contribute to the cellular response, but increases in mesh size are not observed with cross linker cleavage in this study. Overall, these data imply a complex interaction between IKVAV, LRE, and GPQGIWGQ to modulate hNSC behavior.


Assuntos
Matriz Extracelular/química , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Oligopeptídeos/farmacologia , Transdução de Sinais , Sequência de Aminoácidos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Gelatinases/química , Gelatinases/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
6.
Biochim Biophys Acta Proteins Proteom ; 1868(7): 140409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171757

RESUMO

Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.


Assuntos
Fibroblastos/metabolismo , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Domínio Catalítico , Dipeptidil Peptidase 4/metabolismo , Endopeptidases , Gelatinases/química , Gelatinases/efeitos dos fármacos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/efeitos dos fármacos , Estrutura Molecular , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/terapia , Pró-Fármacos , Prolil Oligopeptidases , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Especificidade por Substrato , Microambiente Tumoral
7.
Angew Chem Int Ed Engl ; 58(43): 15287-15294, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31402550

RESUMO

Tumor complexity makes the development of highly sensitive tumor imaging probes an arduous task. Here, we construct a peptide-based near-infrared probe that is responsive to fibroblast activation protein-α (FAP-α), and specifically forms nanofibers on the surface of cancer-associated fibroblasts (CAFs) in situ. The assembly/aggregation-induced retention (AIR) effect results in enhanced accumulation and retention of the probe around the tumor, resulting in a 5.5-fold signal enhancement in the tumor 48 h after administration compared to that of a control molecule that does not aggregate. The probe provides a prolonged detectable window of 48 h for tumor diagnosis. The selective assembly of the probe results in a signal intensity over four- and fivefold higher in tumor than in the liver and kidney, respectively. With enhanced tumor imaging capability, this probe can visualize small tumors around 2 mm in diameter.


Assuntos
Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Nanofibras/química , Peptídeos/metabolismo , Serina Endopeptidases/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Sequência de Aminoácidos , Animais , Fibroblastos Associados a Câncer/citologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Endopeptidases , Corantes Fluorescentes/química , Gelatinases/química , Humanos , Proteínas de Membrana/química , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Neoplasias/diagnóstico por imagem , Peptídeos/síntese química , Peptídeos/química , Serina Endopeptidases/química , Distribuição Tecidual , Transplante Heterólogo
8.
J Basic Microbiol ; 59(8): 846-852, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215677

RESUMO

In the present study, 20 psychrotolerant yeast species isolated from the soils of King George Island in the sub-Antarctic region were evaluated for the production of extracellular gelatinase, an enzyme with high potential for applications in diverse areas, such as food and medicine. The production of extracellular gelatinase was confirmed in the yeasts Metschnikowia sp., Leucosporidium fragarium, and Mrakia sp., the last one being the yeast in which the highest gelatinase activity was detected. The enzyme was purified from cultures of Mrakia sp., and the effect of different physical-chemical factors on its activity was determined. The gelatinase produced by Mrakia sp. would correspond to a protein of relative molecular weight (rMW) 37,000, which displayed the highest activity at 36°C, pH 7.0, 10 mM CaCl 2 , and 5 mM ZnSO 4 .


Assuntos
Basidiomycota/enzimologia , Proteínas Fúngicas/metabolismo , Gelatinases/metabolismo , Regiões Antárticas , Basidiomycota/metabolismo , Cloreto de Cálcio , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Gelatinases/química , Gelatinases/isolamento & purificação , Concentração de Íons de Hidrogênio , Metschnikowia/enzimologia , Metschnikowia/metabolismo , Peso Molecular , Temperatura , Sulfato de Zinco
9.
J Nucl Med ; 60(10): 1421-1429, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30850501

RESUMO

Cancer-associated fibroblasts constitute a vital subpopulation of the tumor stroma and are present in more than 90% of epithelial carcinomas. The overexpression of the serine protease fibroblast activation protein (FAP) allows a selective targeting of a variety of tumors by inhibitor-based radiopharmaceuticals (FAPIs). Of these compounds, FAPI-04 has been recently introduced as a theranostic radiotracer and demonstrated high uptake into different FAP-positive tumors in cancer patients. To enable the delivery of higher doses, thereby improving the outcome of a therapeutic application, several FAPI variants were designed to further increase tumor uptake and retention of these tracers. Methods: Novel quinoline-based radiotracers were synthesized by organic chemistry and evaluated in radioligand binding assays using FAP-expressing HT-1080 cells. Depending on their in vitro performance, small-animal PET imaging and biodistribution studies were performed on HT-1080-FAP tumor-bearing mice. The most promising compounds were used for clinical PET imaging in 8 cancer patients. Results: Compared with FAPI-04, 11 of 15 FAPI derivatives showed improved FAP binding in vitro. Of these, 7 compounds demonstrated increased tumor uptake in tumor-bearing mice. Moreover, tumor-to-normal-organ ratios were improved for most of the compounds, resulting in images with higher contrast. Notably two of the radiotracers, FAPI-21 and -46, displayed substantially improved ratios of tumor to blood, liver, muscle, and intestinal uptake. A first diagnostic application in cancer patients revealed high intratumoral uptake of both radiotracers already 10 min after administration but a higher uptake in oral mucosa, salivary glands, and thyroid for FAPI-21. Conclusion: Chemical modification of the FAPI framework enabled enhanced FAP binding and improved pharmacokinetics in most of the derivatives, resulting in high-contrast images. Moreover, higher doses of radioactivity can be delivered while minimizing damage to healthy tissue, which may improve therapeutic outcome.


Assuntos
Gelatinases/química , Proteínas de Membrana/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Quinolinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Serina Endopeptidases/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quelantes/farmacologia , Endopeptidases , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons , Ligação Proteica , Quinolinas/química , Solventes , Resultado do Tratamento
10.
Fish Shellfish Immunol ; 86: 213-222, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30453047

RESUMO

Matrix metalloproteinases (MMPs) are a family of endopeptidases collectively able to degrade the components of the extracellular matrix (ECM), with important roles in many biological processes, such as embryogenesis, normal tissue remodelling, angiogenesis and wound healing. New views on the function of MMPs reveal that they regulate inflammatory response and therefore might represent an early step in the evolution of the immune system. MMPs can affect the activity of cytokines involved in inflammation including TGF-ß and TNF-α. MMPs are widely distributed in all kingdoms of life and have likely evolved from a single-domain protein which underwent successive rounds of duplications. In this study, we focused on the Ciona robusta (formerly known as Ciona intestinalis) MMP gelatinase homologue. Gene organization, phylogenetic analysis and 3D modeling supported the closest correlation of C. robusta gelatinase with the human MMP-9. Real-time PCR analysis and zymographic assay showed a prompt expression induced by LPS inoculation and an upregulation of enzymatic activity. Furthermore, we showed that before of the well-known increase of TGF-ß and TNF-α levels, a MMP-9like boost occurred, suggesting a possible involvement of MMP-9like in regulating inflammatory response in C. robusta.


Assuntos
Ciona intestinalis/enzimologia , Inflamação/enzimologia , Metaloproteinases da Matriz/genética , Animais , Ciona intestinalis/genética , Gelatinases/química , Gelatinases/genética , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Metaloproteinases da Matriz/química , Modelos Moleculares , Filogenia , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
ACS Chem Biol ; 13(12): 3333-3342, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30489064

RESUMO

Identifying protein targets of bioactive small molecules often requires complex, lengthy development of affinity probes. We present a method for stochastic modification of small molecules of interest with a photoactivatable phenyldiazirine linker. The resulting isomeric mixture is conjugated to a hydrophilic copolymer decorated with biotin and a fluorophore. We validated this approach using known inhibitors of several medicinally relevant enzymes. At least a portion of the stochastic derivatives retained their binding to the target, enabling target visualization, isolation, and identification. Moreover, the mix of stochastic probes could be separated into fractions and tested for binding affinity. The structure of the active probe could be determined and the probe resynthesized to improve binding efficiency. Our approach can thus enable rapid target isolation, identification, and visualization, while providing information required for subsequent synthesis of an optimized probe.


Assuntos
Marcadores de Afinidade/química , Ácido Aspártico Endopeptidases/química , Diazometano/análogos & derivados , Gelatinases/química , Glutamato Carboxipeptidase II/química , Proteínas de Membrana/química , Proteômica/métodos , Serina Endopeptidases/química , Marcadores de Afinidade/síntese química , Marcadores de Afinidade/efeitos da radiação , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Biotina/química , Linhagem Celular Tumoral , Diazometano/síntese química , Diazometano/efeitos da radiação , Endopeptidases , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/efeitos da radiação , Fluoresceínas/química , Corantes Fluorescentes/química , Gelatinases/antagonistas & inibidores , Glutamato Carboxipeptidase II/antagonistas & inibidores , Humanos , Espectrometria de Massas/métodos , Proteínas de Membrana/antagonistas & inibidores , Microscopia Confocal/métodos , Ácidos Polimetacrílicos/química , Raios Ultravioleta
12.
ACS Sens ; 3(9): 1846-1854, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30188115

RESUMO

Traditional photoluminescence resonance energy transfer (PRET)-based sensors are widely applied, but still suffer from the severe background interference from in situ excitation. The afterglow nature of the persistent luminescence nanoparticles (PLNPs) allows optosensing after the stoppage of in situ illumination, and thus subtly overcomes that interference. We proposed a simple strategy for functionalizing PLNPs for bioanalytical applications and the new afterglow resonance energy transfer (ARET)-based assay for quantitative determination and imaging of fibroblast activation protein-alpha (FAPα) in live cells using Au-decorated Cr3+0.004:ZnGa2O4 as donor and Cy5.5-KGPNQC-SH as acceptor. The ARET between the donor and acceptor quenches the afterglow of the donor, and the cleavage of peptide KGPNQC by FAPα inhibits the ARET and restores the afterglow of the donor. The ARET-based assay of FAPα, with the linear range of 0.1-2.0 mg·L-1 (1.2-22.9 nM), LOD of 11 µg·L-1 (115 pM), and RSD of 3.9% (for 0.5 mg·L-1 FAPα, n = 5), displays higher sensitivity, lower limit of detection (LOD), and better anti-interference capability than the corresponding PRET-based assay. Besides, the ARET-based sensors are lighted up by the FAPα-positive U87MG and MDA-MB-435 cells, but kept in the dark when incubated in the FAPα-negative AD293 cells. The proposed ARET-based sensor can detect FAPα of U87MG and MDA-MB-435 living cells in human serum with the spiked recoveries of 95.6-103%. Our data demonstrated a simple and effective strategy for bridging PLNPs to bioanalytical applications, and an attractive ARET assay of FAPα.


Assuntos
Ensaios Enzimáticos/métodos , Gelatinases/sangue , Medições Luminescentes/métodos , Proteínas de Membrana/sangue , Serina Endopeptidases/sangue , Carbocianinas/química , Linhagem Celular Tumoral , Endopeptidases , Transferência de Energia , Corantes Fluorescentes/química , Gelatinases/química , Humanos , Limite de Detecção , Proteínas de Membrana/química , Nanopartículas Metálicas/química , Metais Pesados/química , Oligopeptídeos/química , Serina Endopeptidases/química
13.
ChemMedChem ; 13(13): 1343-1352, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29893479

RESUMO

Targeting matrix metalloproteinases (MMPs) is a pursued strategy for treating several pathological conditions, such as multiple sclerosis and cancer. Herein, a series of novel tetrahydro-ß-carboline derivatives with outstanding inhibitory activity toward MMPs are present. In particular, compounds 9 f, 9 g, 9 h and 9 i show sub-nanomolar IC50 values. Interestingly, compounds 9 g and 9 i also provide remarkable selectivity toward gelatinases; IC50 =0.15 nm for both toward MMP-2 and IC50 =0.63 and 0.58 nm, respectively, toward MMP-9. Molecular docking simulations, performed by employing quantum mechanics based partial charges, shed light on the rationale behind binding involving specific interactions with key residues of S1' and S3' domains. Taken together, these studies indicate that tetrahydro-ß-carboline represents a promising scaffold for the design of novel inhibitors able to target MMPs and selectively bias gelatinases, over the desirable range of the pharmacokinetics spectrum.


Assuntos
Carbolinas/química , Gelatinases/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz/química , Carbolinas/síntese química , Carbolinas/farmacocinética , Desenho de Fármacos , Ensaios Enzimáticos , Gelatinases/química , Humanos , Metaloproteinase 2 da Matriz/química , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/farmacocinética , Simulação de Acoplamento Molecular , Estereoisomerismo
14.
Acta Histochem ; 120(2): 136-141, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29373132

RESUMO

Matrix metalloproteinases (MMPs) such as gelatinases are differentially expressed in human tissues. These enzymes cleave specific substrates involved in cell signaling, tissue development and remodeling and tissue breakdown. Recent evidences show that gelatinases are crucial for normal dentin development and their activity is maintained throughout the entire tooth function in the oral cavity. Due to the lack of information about the exact location and activity of gelatinases in mature human dentin, the present study was designed to examine gelatinolytic levels in sound dentin. In situ zymography using confocal microscopy was performed on both mineralized and demineralized dentin samples. Sites presenting gelatinase activity were identified throughout the entire biological tissue pursuing different gelatinolytic levels for distinct areas: predentin and dentinal tubule regions presented higher gelatinolytic activity compared to intertubular dentin. Dentin regions with higher gelatinolytic activity immunohistochemically were partially correlated with MMP-2 expression. The maintenance of gelatinolytic activity in mature dentin may have biological implications related to biomineralization of predentin and tubular/peritubular dentinal regions, as well as regulation of defensive mechanisms of the dentin-pulp complex.


Assuntos
Dentina/enzimologia , Gelatinases , Adolescente , Gelatinases/química , Gelatinases/metabolismo , Humanos , Imuno-Histoquímica , Microscopia Confocal , Adulto Jovem
15.
J Mol Microbiol Biotechnol ; 27(6): 319-331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29197868

RESUMO

A protein showing endoglucanase-peptidase activity was prepared from a newly isolated bacterium (ST15c10). We identified ST15c10 as Brevibacillus agri based on electron-microscopic images and its 16S-rDNA sequence (GenBank accession No. HM446043), which exhibits 98.9% sequence identity to B. agri (KZ17)/B. formosus (DSM-9885T)/B. brevis. The enzyme was purified to homogeneity and gave a single peak during high-performance liquid chromatography on a Seralose 6B-150 gel-matrix/C-18 column. MALDI-TOF mass-spectrometry and bioinformatics studies revealed significant similarity to M42-aminopeptidases/endoglucanases of the CelM family. These enzymes are found in all Brevibacillus strains for which the genome sequence is known. ST15c10 grows optimally on carboxymethyl cellulose (CMC)-gelatin (40°C/pH 8-9), and also shows strong growth/carboxymethyl cellulase (CMCase) activity in submerged bagasse fermentation. The purified enzyme also functions as endoglucanase with solid bagasse/rice straw. Its CMCase activity (optimal at pH 5.6 and 60°C/Km = 35.5 µM/Vmax = 1,024U) was visualized by zymography on a CMC-polyacrylamide gel, which provided a strong band of approximately 70 kDa. The purified enzyme also showed strong peptidase (gelatinase) activity (pH 7.2/40°C during zymography on 6-12% gelatin/1% gelatin-PAGE (at approx. 70 kDa). The CMCase activity is inhibited by the metal ions Mn/Cu/Fe/Co (50%), Hg/KMnO4 (100%), and by glucose or lactose (50-75%; all at 1 mM). The observed dose/time-dependent inhibition by Hg ions could be prevented with 2-mercaptoethanol. A comparison of the B. agri endoglucanase-aminopeptidase (ELK43520; 350 aa) with other members of the M42-family revealed the conservation of active-site residues Cys256/Cys260, which were previously identified as metal-binding sites. Regulation of the endoglucanase activity probably occurs via metal binding-triggered changes in the redox state of the enzyme. Studies on this type of enzyme are of high importance for basic scientific and industrial research.


Assuntos
Brevibacillus/enzimologia , Celulase/isolamento & purificação , Celulase/metabolismo , Gelatinases/isolamento & purificação , Gelatinases/metabolismo , Sequência de Aminoácidos , Aminopeptidases , Sequência de Bases , Brevibacillus/genética , Brevibacillus/isolamento & purificação , Brevibacillus/fisiologia , Carboximetilcelulose Sódica/metabolismo , Celulase/química , Celulose/metabolismo , DNA Ribossômico/genética , Estabilidade Enzimática , Fermentação , Gelatinases/química , Concentração de Íons de Hidrogênio , Metais , Modelos Moleculares , Peso Molecular , Oryza , Conformação Proteica , Especificidade por Substrato , Temperatura
16.
J Med Chem ; 60(20): 8385-8393, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28953383

RESUMO

Proteases are directly involved in cancer pathogenesis. Expression of fibroblast activation protein (FAP) is upregulated in stromal fibroblasts in more than 90% of epithelial cancers and is associated with tumor progression. FAP expression is minimal or absent in most normal adult tissues, suggesting its promise as a target for the diagnosis or treatment of various cancers. Here, we report preparation of a polymer conjugate (an iBody) containing a FAP-specific inhibitor as the targeting ligand. The iBody inhibits both human and mouse FAP with low nanomolar inhibition constants but does not inhibit close FAP homologues dipeptidyl peptidase IV, dipeptidyl peptidase 9, and prolyl oligopeptidase. We demonstrate the applicability of this iBody for the isolation of FAP from cell lysates and blood serum as well as for its detection by ELISA, Western blot, flow cytometry, and confocal microscopy. Our results show the iBody is a useful tool for FAP targeting in vitro and potentially also for specific anticancer drug delivery.


Assuntos
Gelatinases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Polímeros/química , Animais , Western Blotting , Linhagem Celular Tumoral , Endopeptidases , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Gelatinases/química , Humanos , Proteínas de Membrana/química , Camundongos , Microscopia Confocal , Serina Endopeptidases/química , Espectrometria de Massas por Ionização por Electrospray
17.
Pathog Dis ; 75(7)2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28830077

RESUMO

HYL-20 (GILSSLWKKLKKIIAK-NH2) is an analogue of a natural antimicrobial peptide (AMP) previously isolated from the venom of wild bee. We examined its antimicrobial activity against three strains of Enterococcus faecalis while focusing on its susceptibility to proteolytic degradation by two known proteases-gelatinase (GelE) and serine protease (SprE)-which are secreted by these bacterial strains. We found that HYL-20 was primarily deamidated at its C-terminal which made the peptide susceptible to consecutive intramolecular cleavage by GelE. Further study utilising 1,10-phenanthroline, a specific GelE inhibitor and analogous peptide with D-Lys at its C-terminus (HYL-20k) revealed that the C-terminal deamidation of HYL-20 is attributed to not yet unidentified protease which also cleaves internal peptide bonds of AMPs. In contrast to published data, participation of SprE in the protective mechanism of E. faecalis against AMPs was not proved. The resistance of HYL-20k to C-terminal deamidation and subsequent intramolecular cleavage has resulted in increased antimicrobial activity against E. faecalis grown in planktonic and biofilm form when compared to HYL-20.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Gelatinases/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Abelhas/química , Abelhas/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Enterococcus faecalis/enzimologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/ultraestrutura , Inibidores Enzimáticos/farmacologia , Gelatinases/antagonistas & inibidores , Gelatinases/química , Testes de Sensibilidade Microbiana , Fenantrolinas/farmacologia , Plâncton/efeitos dos fármacos , Plâncton/enzimologia , Plâncton/crescimento & desenvolvimento , Plâncton/ultraestrutura , Proteólise , Serina Endopeptidases/química , Relação Estrutura-Atividade
18.
Biochem Pharmacol ; 138: 81-95, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506758

RESUMO

Preeclampsia is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg) and often intrauterine growth restriction (IUGR). Placental ischemia could be an initiating event, but the molecular mechanisms are unclear. To test the hypothesis that dimerization of matrix metalloproteinases (MMPs) plays a role in HTN-Preg and IUGR, the levels/activity of MMP-9, tissue inhibitor of metalloproteinase (TIMP-1), and their dimerization forms were measured in the placenta, uterus, and uterine artery of normal pregnant (Preg) rats and a rat model of reduced uteroplacental perfusion pressure (RUPP). Consistent with our previous report, blood pressure (BP) was higher, pup weight was lower, and gelatin zymography showed different gelatinolytic activity for pro-MMP-9, MMP-9, pro-MMP-2 and MMP-2 in RUPP vs Preg rats. Careful examination of the zymograms showed additional bands at 200 and 135kDa. Western blots with MMP-9 antibody suggested that the 200kDa band was a MMP-9 homodimer. Western blots with TIMP-1 antibody as well as reverse zymography suggested that the 135kDa band was a MMP-9/TIMP-1 complex. The protein levels and gelatinase activity of MMP-9 homodimer were decreased while MMP-9/TIMP-1 complex was increased in placenta, uterus and uterine artery of RUPP vs Preg rats. The epidermal growth factor (EGF) receptor blocker erlotinib and protein kinase C (PKC) inhibitor bisindolylmaleimide decreased MMP-9 homodimer and increased MMP-9/TIMP-1 complex in placenta, uterus and uterine artery of Preg rats. EGF and the PKC activator phorbol-12,13-dibutyrate (PDBu) reversed the decreases in MMP-9 homodimer and the increases in MMP-9/TIMP-1 complex in tissues of RUPP rats. Thus, the increased BP and decreased pup weight in placental ischemia model of HTN-Preg are associated with a decrease in MMP-9 homodimer and an increase in MMP-9/TIMP-1 complex in placenta, uterus, and uterine artery, which together would cause a net decrease in MMP-9 activity and reduce uteroplacental and vascular remodeling in the setting of HTN-Preg and IUGR. Enhancing EGFR/PKC signaling may reverse the MMP-9 unfavorable dimerization patterns and thereby promote uteroplacental and vascular remodeling in preeclampsia.


Assuntos
Modelos Animais de Doenças , Hipertensão Induzida pela Gravidez/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Placenta/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Artéria Uterina/metabolismo , Útero/metabolismo , Animais , Dimerização , Ativadores de Enzimas/farmacologia , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Feminino , Retardo do Crescimento Fetal/etiologia , Gelatinases/química , Gelatinases/metabolismo , Hipertensão Induzida pela Gravidez/fisiopatologia , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Pré-Eclâmpsia/etiologia , Gravidez , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Inibidor Tecidual de Metaloproteinase-1/química , Artéria Uterina/efeitos dos fármacos , Útero/irrigação sanguínea , Útero/efeitos dos fármacos , Remodelação Vascular
19.
Mol Cell Biochem ; 427(1-2): 111-122, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013477

RESUMO

Matrix metalloproteinases (MMPs) play a crucial role in developing different types of lung diseases, e.g., pulmonary arterial hypertension (PAH). Green tea polyphenolic catechins such as EGCG and ECG have been shown to ameliorate various types of diseases including PAH. Our present study revealed that among the four green tea catechins (EGCG, ECG, EC, and EGC), EGCG and ECG inhibit pro-/active MMP-2 activities in pulmonary artery smooth muscle cell (PASMC) culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-2 with the green tea catechins by computational methods. In silico analysis revealed a strong interaction of pro-/active MMP-2 with EGCG/ECG, and galloyl group has been observed to be responsible for this interaction. The in silico analysis corroborated our experimental observation that EGCG and ECG are active in preventing both the proMMP-2 and MMP-2 activities. Importantly, these two catechins appeared to be better inhibitors for proMMP-2 in comparison to MMP-2 as revealed by gelatin zymogram and also by molecular docking studies. In many type of cells, activation of proMMP-2 occurs via an increase in the level of MT1-MMP (MMP-14). We, therefore, determined the interactions of MT1-MMP with the green tea catechins by molecular docking analysis. The study revealed a strong interaction of MT1-MMP with EGCG/ECG, and galloyl group has been observed to be responsible for the interaction.


Assuntos
Catequina , Precursores Enzimáticos , Gelatinases , Metaloproteinase 2 da Matriz , Simulação de Acoplamento Molecular , Inibidores de Proteases , Chá/química , Animais , Catequina/química , Catequina/farmacologia , Bovinos , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Gelatinases/antagonistas & inibidores , Gelatinases/química , Gelatinases/metabolismo , Humanos , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
20.
Biomaterials ; 116: 57-68, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27914267

RESUMO

Poor tumor-targeted and cytoplasmic delivery is a bottleneck for protein toxin-based cancer therapy. Ideally, a protein toxin drug should remain stealthy in circulation for prolonged half-life and reduced side toxicity, but turn activated at tumor. PEGylation is a solution to achieve the first goal, but creates a hurdle for the second because PEG rejects interaction between the drugs and tumor cells therein. Such PEG dilemma is an unsolved problem in protein delivery. Herein proposed is a concept of turning PEG dilemma into prodrug-like feature. A site-selectively PEGylated, gelatinase-triggered cell-penetrating trichosanthin protein delivery system is developed with three specific aims. The first is to develop an intein-based ligation method for achieving site-specific modification of protein toxins. The second is to develop a prodrug feature that renders protein toxins remaining stealthy in blood for reduced side toxicity and improved EPR effect. The third is to develop a gelatinase activatable cell-penetration strategy for enhanced tumor targeting and cytoplasmic delivery. Of note, site-specific modification is a big challenge in protein drug research, especially for such a complicated, multifunctional protein delivery system. We successfully develop a protocol for constructing a macromolecular prodrug system with intein-mediated ligation synthesis. With an on-column process of purification and intein-mediated cleavage, the site-specific PEGylation then can be readily achieved by conjugation with the activated C-terminus, thus constructing a PEG-capped, cell-penetrating trichosanthin system with a gelatinase-cleavable linker that enables tumor-specific activation of cytoplasmic delivery. It provides a promising method to address the PEG dilemma for enhanced protein drug delivery, and importantly, a facile protocol for site-specific modification of such a class of protein drugs for improving their druggability and industrial translation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gelatinases/química , Inteínas , Neoplasias Experimentais/química , Neoplasias Experimentais/tratamento farmacológico , Polietilenoglicóis/química , Tricosantina/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Camundongos , Neoplasias Experimentais/patologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...